RUHR-UNIVERSITÄT BOCHUM

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center

RUB

Development of a modular concrete heliostat prototype

Funded by Deutsche DFG Forschungsgemeinschaft German Research Foundation

Mission statement

The main idea of this 'knowledge transfer' project is to replace typical steel structures for heliostats by means of concrete due to its low costs. With respect to accuracy demands a high-performance concrete is used that possesses high compressive and tensile strength. The collector is designed as a strut-like structure with main radial beams and a central mount to ensure high stiffness. The design exhibits a circular shape to reduce shading. For construction, the concrete collector is dissolved into equal modules derived from symmetry reduction methods enabling serial production. The modules are subsequently post-tensioned to form a heliostat. To show the feasibility, a small-scale prototype is developed that will be built up and qualified at the solar tower Jülich, Germany.

6.2 MPa

25 kN/m³

Motivation

High-performance concrete (NANODUR®)		Dimensions	
 Young's modulus 	50,000 MPa	•	Diameter

- Compressive strength
- Flexural tensile strength
- Design tensile strength
- Bulk density
- neter 116 MPa Mirror area 20 MPa
 - Weight
 - Modules

System reduction method

- Derivation of segmental modules with equivalent stiffness
- **Restrictions:**

Accuracy analysis

- Numerical analysis of deformations
- Derivation of slope deviations SD

3.2 m

8 m²

744 kg

SDrms = 1.20 mrad (numerically)

Slope deviation SDrms ≤ 1.25 mrad 1st principle stress $\sigma_1 \le 6.2$ MPa

Construction

Polystyrene formwork with adhesive foil covering External post-tensioning of the modules to form a heliostat Additional mounting on the already existing T-type pylon for the central mount at the solar tower plant Jülich, Germany Mirroring by means of composite mirror elements "vegaprime" (aluminum layer with plastic core)

Ð

Project partner:

