
 
 

 

 
Infrastructures 2021, 6, 149. https://doi.org/10.3390/infrastructures6110149 www.mdpi.com/journal/infrastructures 

Article 

Modification of Variance-Based Sensitivity Indices for  
Stochastic Evaluation of Monitoring Measures 
David Sanio *, Mark Alexander Ahrens and Peter Mark 

Institute of Concrete Structures, Ruhr-University Bochum, 44780 Bochum, Germany;  
alexander.ahrens@rub.de (M.A.A.); peter.mark@rub.de (P.M.) 
* Correspondence: david.sanio@rub.de; Tel.: +49-(0)234-32-26065 

Abstract: In complex engineering models, various uncertain parameters affect the computational 
results. Most of them can only be estimated or assumed quite generally. In such a context, measure-
ments are interesting to determine the most decisive parameters accurately. While measurements 
can reduce parameters’ variance, structural monitoring might improve general assumptions on dis-
tributions and their characteristics. The decision on variables being measured often relies on experts’ 
practical experience. This paper introduces a method to stochastically estimate the potential benefits 
of measurements by modified sensitivity indices. They extend the established variance-based sen-
sitivity indices originally suggested by Sobol’. They do not quantify the importance of a variable but 
the importance of its variance reduction. The numerical computation is presented and exemplified 
on a reference structure, a 50-year-old pre-stressed concrete bridge in Germany, where the predic-
tion of the fatigue lifetime of the pre-stressing steel is of concern. Sensitivity evaluation yields six 
important parameters (e.g., shape of the S–N curve, temperature loads, creep, and shrinkage). How-
ever, taking into account individual monitoring measures and suited measurements identified by 
the modified sensitivity indices, creep and shrinkage, temperature loads, and the residual pre-strain 
of the tendons turn out to be most efficient. They grant the highest gains of accuracy with respect 
to the lifetime prediction. 

Keywords: sensitivity analysis; probability; probabilistic methods; Monte Carlo; monitoring;  
lifetime prediction; concrete bridge 
 

1. Introduction 
Engineers use mathematical models to describe the bearing behavior of structures or 

to predict their residual lifetime [1]. Here, usually many and partially interactive param-
eters need to be considered [2], for instance, material properties [3], loads [4] and dimen-
sions [5]. To account for uncertainty, they are included as variables in stochastic simula-
tions [6–9]. 

Sensitivity analyses (SA) are well established to investigate and analyze analytical or 
numerical computational models [10,11]. They help to improve the knowledge on the 
model’s behavior and to assess the impact of all parameters to the variability of the model 
output [12]. During the last decades, alternative methods have been developed and en-
hanced [13]. While in case of simple models, the impact of a single variable might already 
be identified analytically or employing local SA, more complex models—quite common 
in engineering—usually require more sophisticated global methods [14]. Global methods 
can be further divided into quantitative and qualitative approaches. For an initial screen-
ing and to identify less relevant parameters [15,16], qualitative, distribution-free methods 
like the Elementary Effect Method by Morris [17] should be preferred. By contrast, the 
variance-based sensitivity indices by Sobol’ [18] involve substantial computational costs 
but also provide the most sophisticated information in model analysis by quantitative 
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results [11]. They assess a parameter’s direct influence, as well as its influence induced by 
correlation to others—referred to as parameter interaction. Finally, a combination of 
screening and quantitative methods is also possible [19]. 

To improve knowledge of specific parameters and to reduce uncertainty in lifetime 
predictions, structural monitoring is becoming more and more popular [20–22]. Measure-
ment techniques are used to monitor the structural response [23–25] or to estimate acting 
loads [26]. Furthermore, material testing is commonly used to increase the accuracy 
[27,28]. Each measurement technique has an associated accuracy and thus a specific re-
duction potential of epistemic uncertainty. However, even at the highest accuracy, all pa-
rameters have a minimum natural uncertainty that cannot be further reduced (aleatory 
uncertainty) [29]. 

So far, monitoring components, sensors and parameters are usually selected by ex-
perts or according to general guidelines [30,31]. The measured variables are selected based 
on experience [32] or the results of structural computation. This paper presents an ap-
proach to answer the question of which parameters should be measured to achieve the 
highest benefit in structural computation, based on highest accuracies achievable by 
measurements. Therefore, not the most important parameter in the model should be iden-
tified, but that one which brings the greatest benefit if its uncertainty is reduced as much 
as possible. 

In this paper a modification of the variance-based sensitivity indices is proposed. 
Based on the reduction of the epistemic uncertainty of a parameter, they can evaluate and 
quantify the benefit of measurements and monitoring. The method is based on the vari-
ance-based sensitivity indices by Sobol’ [18], which are presented in Section 2, and the 
conditional variance [33,34], where a single parameter is fixed to a constant value. The 
modified approach is presented in Section 3 and exemplified on a practical model in Sec-
tion 4. The presented model was developed to predict the residual fatigue lifetime of a 
pre-stressed concrete bridge. 

2. Variance-Based Sensitivity Indices 
Variance-based SA go back to the pioneering work of Cukier et al. [35], who consid-

ered the conditional variance as a measure of a model’s sensitivity. Later, Hora and Iman 
[34] analyzed the variance of a model in cases when one parameter is fixed to a certain 
value. Finally, Sobol’ derived a numerical, Monte-Carlo-based estimation of sensitivity 
indices [18], which covers both a parameter’s direct influence as well as its interaction to 
others by means of the covariance [13]. In this section, the theoretical background of this 
SA method is given. In Section 2.2, a method of computation is briefly introduced which 
is later adapted to derive modified indices in Section 3. 

2.1. Variance-Based Sensitivity Indices by Sobol’ 
A computational model describes a specific output Y based on one or a different in-

put parameters (variables) Xi, cf. Equation (1). The uncertainty of each variable V(Xi) prop-
agates through the model and results in uncertain model output V(Y). Variance-based SA 
determine the contribution of each parameter’s uncertainty to the uncertainty of the out-
put. For complex models, in addition to the direct variance of each parameter V(Xi), co-
variances V(Xi,Xj) and higher order variances V(Xi, … Xn) arise and can be relevant. Then, 
more sophisticated SA methods serve to identify each parameter’s impact. 

In general, all these methods base on variance decomposition of a model Y Equation 
(1) as a square-integrable function of q variables X1, X2, ..., Xq in a q-dimensional unit hy-
perspace Ωq (0 ≤ Xi ≤ 1). 𝑌 = 𝑓(𝒙) = 𝑓൫𝑋ଵ, 𝑋ଶ, … 𝑋௤൯ (1) 

Decomposition of Y—by means of ANOVA HDMR (analysis of variance, high di-
mensional model representation [36])—delivers a single constant term f0, q linear terms 
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fi(Xi), q over 2 s-order terms fij and higher-order terms. Overall, the model consists of 2q 
terms; each square-integrable again. 

𝑌 = 𝑓(𝒙) = 𝑓଴ + ෍ 𝑓௜(𝑋௜)௤
௜ୀଵ + ෍ ෍ൣ𝑓௜௝൫𝑋௜, 𝑋௝൯ + ⋯ + 𝑓ଵ,ଶ…௤൫𝑋ଵ, 𝑋ଶ, … 𝑋௤൯൧௤

௝வ௜
௤

௜ୀଵ  (2) 

The decomposition is not unique, but assuming all mean values except f0 to be zero, 
Sobol’ proved all terms being orthogonal [18]. Thus, the zero-order term f0 corresponds to 
the model’s expectation E(Y): 𝑓଴ = 𝐸(𝑌) (3) 

Higher-order terms can be determined by the conditional expectation E(Y|Xi) (see 
[37]), where dx-i denotes an integration over all dimensions except i; equivalently, dx−i,j 
indicates an integration over all dimensions except i and j. 𝑓௜(𝑋௜) = 𝐸(𝑌|𝑋௜) − 𝐸(𝑌) = න … න 𝑓(𝒙)𝑑𝒙ି௜ଵ

଴
ଵ

଴ − 𝑓଴ (4) 𝑓௜௝൫𝑋௜. 𝑋௝൯ = 𝐸൫𝑌ห𝑋௜, 𝑋௝൯ − 𝑓௜ − 𝑓௝ − 𝐸(𝑌) = න … න 𝑓(𝒙)𝑑𝒙ିሼ௜,௝ሽଵ
଴

ଵ
଴ − 𝑓௜(𝑋௜) − 𝑓௝൫𝑋௝൯ − 𝑓଴ (5) 

In this way, the model’s variance V(Y) = E(Y²) − E(Y)² = ∫Ωq f²(x) dx − f0² can be decom-
posed in first- and higher-order terms, respectively (Equation (6)). Here, the second-order 
variance Vij of two parameters Xi and Xj is the covariance and is a measure of interaction. 

𝑉(𝑌) = ෍ 𝑉௜௤
௜ୀଵ + ෍ ෍ൣ𝑉௜,௝ + ⋯ + 𝑉ଵ,ଶ…௤൧௤

௝வ௜
௤

௜ୀଵ  (6) 

From this, the first order sensitivity index Si follows as the ratio of the model’s con-
ditional variance V(E(Y|Xi)), when all parameters but Xi are fixed, to the variance of the 
entire model V(Y) with all parameters variable. 𝑆௜ = 𝑉൫𝑓௜(𝑋௜)൯𝑉(𝑌) =  𝑉൫𝐸(𝑌|𝑋௜)൯𝑉(𝑌)  (7) 

Thus, single Si-values quantify the direct impact of an individual variance on the 
model result Y. Higher-order sensitivity indices (Sij, … S1,2...q) can be deduced from condi-
tional variances as well (see [10]). Those are measures of interaction of two (covariance) 
or more parameters (higher-order variance). Restricting on a single parameter Xi for con-
venience, its total sensitivity index STi represents the ratio of its direct influence on the 
model’s variance Vi (conditional variance) and all covariances of Xi (Vij, Vijk, ...) in relation 
to the model’s variance. To prevent the conditional variance from being dependent on a 
fixed value Xi = xi*, the expectation of the conditional variance Vx-i(Xi = xi*) over the range of 
xi* denoted EXi(Vx-i(Xi = xi*)) = E(V(Y|X-i) is calculated [10]. 𝑉(𝑌) = 𝑉൫𝐸(𝑌|𝑋௜)൯ + 𝐸൫𝑉(𝑌|𝑋௜)൯            = 𝑉൫𝐸(𝑌|𝑿ି௜)൯ + 𝐸൫𝑉(𝑌|𝑿ି௜)൯ (8) 

Finally, the total sensitivity index STi for the parameter Xi follows as the ratio of the 
parameter’s direct variance Vi and all higher-order variances (Vij, Vijk ...) involving Xi to the 
variance of the entire model V(Y). Thus, it quantifies the impact of all interactions involv-
ing Xi and their direct influences: 𝑆்௜ = 1 − 𝑉(𝐸(𝑌|𝑿ି௜))𝑉(𝑌)         = 𝑉௜ + ∑ 𝑉௜௝ ௝,௝ஷ௜ + ∑ ∑ 𝑉௜௝௞ + ⋯ + 𝑉ଵ,ଶ…௤ ௞,௞ஷ௜,௞ஷ௝ ௝,௝ஷ௜,௝ஷ௞𝑉(𝑌)         = 𝑆௜ + ෍ 𝑆௜௝௝,௝ஷ௜ + ෍ ෍ 𝑆௜௝௞ + ⋯ + 𝑆ଵ,ଶ…௤௞,௞ஷ௜,௞ஷ௝௝,௝ஷ௜,௝ஷ௞  

(9) 
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In case of no interactions, all higher-order variances are zero and STi = Si. 

2.2. Computation of Variance-Based Sensitivity Indices 
Sensitivity indices are usually computed using Monte Carlo simulations [38]. Ini-

tially, Sobol’ [18] developed an algorithm which was later enhanced by Saltelli et al. [13]. 
Another modification by Glen and Isaacs [39] significantly lowers computational costs 
reducing the number of model simulations n necessary from n² to n (2 + q) by calculating 
the correlation properties of the results. Remember that q denotes the number of parame-
ters in the model, while the user’s choice of n comes along with the accuracy of the result-
ing indices and depends on the convergence of results (see Section 4.4 and [10,14,39,40]). 

For computation, two independent sample matrices A and B are generated, each con-
taining n realizations of q variables. For reliable results, the stochastic independence of A 
and B is essential [41]. It can be found through Pearson’s coefficient of correlation ρA,B ≈ 0. 
Otherwise, even small correlations can be found as spurious correlations in the resulting 
sensitivity indices [39]. Especially for models with several parameters, the sensitivity in-
dices are likely to be close to zero. Here, spurious correlations can distort the results. 

𝑨 = ቎𝑥ଵ(ଵ) ⋯ 𝑥௜(ଵ)⋮ ⋯ ⋮𝑥ଵ(௡) ⋯ 𝑥௜(௡)
⋯ 𝑥௤(ଵ)⋯ ⋮⋯ 𝑥௤(௡)቏ ;     𝑩 = ൦𝑥௤ାଵ(ଵ) ⋯ 𝑥௤ା௜(ଵ)⋮ ⋯ ⋮𝑥௤ାଵ(௡) ⋯ 𝑥௤ା௜(௡)

⋯ 𝑥ଶ௤(ଵ)⋯ ⋮⋯ 𝑥ଶ௤(௡)൪ (10) 

In a second step, q further matrices Ci (with i = 1, … q) are assembled from A and B. 
They are generated by interchanging columns. This means that the new matrix Ci is iden-
tical to B, solely column i (for parameter i) is taken from matrix A instead. Other matrices 
Ci are obtained analogously. 

𝑪௜ = ൦𝑥௤ାଵ(ଵ) ⋯ 𝑥௤ା௜ିଵ(ଵ)⋮ ⋯ ⋮𝑥௤ାଵ(௡) ⋯ 𝑥௤ା௜ିଵ(௡)
𝑥௜(ଵ)⋮𝑥௜(௡)    𝑥௤ା௜ାଵ(ଵ)⋮𝑥௤ା௜ାଵ(௡)

⋯ 𝑥ଶ௤(ଵ)⋯ ⋮⋯ 𝑥ଶ௤(௡)൪ (11) 

By model computation the result vectors a = Y(A), b = Y(B) and c1 = Y(C1) to cq = Y(Cq) 
are determined. Finally, the sensitivity indices are obtained based on correlation proper-
ties between ci and a or ci and b, respectively. For details see [39]. 

3. Method: Modification of Variance-Based Sensitivity Indices 
By means of sensitivity indices, the influence of a single parameter on the entire 

model can be analyzed based on its variance. Hora and Iman [34] introduced the condi-
tional variance of a model, when one of its parameters is fixed to a deterministic value. In 
fact, the individual variances in stochastic analyses usually contain aleatory (random, 
nonreducible) and epistemic (reducible, inaccurate knowledge) parts. For structural sys-
tems only epistemic variances can be reduced (Figure 1). To determine the benefits of in-
creased knowledge by monitoring or other measurements to reduce the variance, modi-
fied sensitivity indices should consider individual variance reductions, not the variance 
itself. 
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Figure 1. Probability density functions of a variable with original and reduced variance due to in-
creased knowledge. 

3.1. Proposed Method Based on SOBOL’ Indices 
The proposed method decomposes the variance of a general model Y—no matter if 

analytical or numerical. While the initial model with originally large variances of all vari-
ables is termed Y0 (cf. Equation (1)), the best model with utmost reduced variances is de-
noted Y*. It comprises q parameters Xi*, each having a reduced variance V* (represented 
by a reduced standard deviation σ* in Figure 1). 𝑌∗ = 𝑓൫𝑋ଵ∗, … 𝑋௜∗, … 𝑋௤∗൯ (12) 

Both models can be reformulated mathematically by means of variance decomposi-
tion (ANOVA HDMR), as shown before. 

𝑉(𝑌଴) = ෍ 𝑉௜,଴௤
௜ୀଵ + ෍ ෍ൣ𝑉௜,௝,଴ + ⋯ + 𝑉ଵ,ଶ…௤,଴൧௤

௝வ௜
௤

௜ୀଵ  (13) 

𝑉(𝑌∗) = ෍ 𝑉௜∗௤
௜ୀଵ + ෍ ෍ൣ𝑉௜,௝∗ + ⋯ + 𝑉ଵ,ଶ…௤∗ ൧௤

௝வ௜
௤

௜ୀଵ  (14) 

Thus, the variance V(Y0) of the initial model Y0 consists of q first-order variances Vi,0 
and (q over 2) covariance terms Vi,j,0 (cf. Equation (6)). Y* is treated equivalently. Thus, the 
difference of the two decomposed variances in Equations (15) and (16) captures the extent 
of potential variance reduction ΔV*. Δ𝑉∗ = 𝑉(𝑌଴) − 𝑉(𝑌∗) (15) 

Employing Equations (15) and (16), this reduced variance can be decomposed, too. 
This decomposition is just analogous to that one in Section 2.2. Δ𝑉∗ = ෍ 𝑉௜,଴௤

௜ୀଵ + ෍ ෍ൣ𝑉௜,௝,଴ + ⋯ + 𝑉ଵ,ଶ…௤,଴൧௤
௝வ௜

௤
௜ୀଵ − ෍ 𝑉௜∗௤

௜ୀଵ − ෍ ෍ൣ𝑉௜,௝∗ + ⋯ + 𝑉ଵ,ଶ…௤∗ ൧௤
௝வ௜

௤
௜ୀଵ  (16) 

Herein, the reduced variance Vi* of a single parameter is interpreted as its individual 
improvement and it reads: Δ𝑉௜ = 𝑉௜,଴ − 𝑉௜∗ (17) 

Thus, the potential variance reduction ΔV* from Equation (16) is given by: 

Δ𝑉∗ = ෍ Δ𝑉௜௤
௜ୀଵ + ෍ ෍ൣΔV௜,௝ + ⋯ + Δ𝑉ଵ,ଶ…௤ ൧௤

௝வ௜
௤

௜ୀଵ  (18) 

f(x)

x

re
la

tiv
e 

fre
qu

en
cy

μ∗
 (= μ0)

σ∗

aleatory variance
(reduced by 
measurement)

σ0

original variance
(aleatory + epistemic)
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If at first only a single parameter Xi* out of the q variables is improved, the model can 
be written as a function of q-1 “original” parameters Xj≠i,0 and one “improved” parameter 
Xi*. 𝑌 = 𝑓൫𝑋ଵ,଴, … 𝑋௜ିଵ,଴, 𝑋௜∗, 𝑋௜ାଵ,଴, … 𝑋௤,଴൯ = 𝑌൫𝑋௝ஷ௜,଴, 𝑋௜∗൯ (19) 

Denoting the variance of this partly improved model V(Y(Xj≠i,0, Xi*)), the variance re-
duction by an improved knowledge about one parameter’s variance follows: Δ𝑉௜∗ = 𝑉(𝑌଴) − 𝑉 ቀ𝑌൫𝑋௝ஷ௜,଴, 𝑋௜∗൯ቁ (20) 

Now, considering two “improved” parameters Xi* and Xj*, the variance reduction of 
the entire model follows: Δ𝑉௜,௝∗ = 𝑉(𝑌଴) − 𝑉 ቀ𝑌൫𝑋௞ஷ௜,௞ஷ௝,଴, 𝑋௜∗, 𝑋௝∗൯ቁ (21) 

In the same way, one can increase the number of parameters with reduced variance 
gradually until finally all parameters Xj* except one single variable Xi,0 exhibit a reduced 
variance. This leads to: 𝑌 = 𝑓൫𝑋ଵ∗, … 𝑋௜ିଵ∗ , 𝑋௜,଴, 𝑋௜ାଵ∗ , … 𝑋௤∗൯ = 𝑌൫𝑋௜,଴, 𝑋௝ஷ௜∗ ൯ (22) 

Hence, the total variance reduction of such a model reads: Δ𝑉௝ஷ௜∗ = 𝑉(𝑌଴) − 𝑉 ቀ𝑌൫𝑋௜,଴, 𝑋௝ஷ௜∗ ൯ቁ (23) 

Finally, modified first-order sensitivity indices Si* are obtained from the ratio of single 
variance reductions ΔVi* (Equation (20)) to the total one ΔV* (acc. to Equation (18)). These 
indices capture the benefit of improving the knowledge about a single parameter Xi but 
neglecting any interactions with other reduced variances. 

𝑆௜∗ = Δ𝑉௜∗Δ𝑉∗ = 𝑉(𝑌଴) − 𝑉 ቀ𝑌൫𝑋௝ஷ௜,଴, 𝑋௜∗൯ቁ𝑉(𝑌଴) − 𝑉(𝑌∗)  (24) 

To evaluate the benefit of simultaneous measurements and belonging variance re-
ductions of two or more parameters, higher-order modified sensitivity indices are con-
ceivable, too. 

𝑆௝ஷ௜∗ = Δ𝑉௝ஷ௜∗Δ𝑉∗ = 𝑉(𝑌଴) − 𝑉 ቀ𝑌൫𝑋௜,଴, 𝑋௝ஷ௜∗ ൯ቁ𝑉(𝑌଴) − 𝑉(𝑌∗)  (25) 

However, each index Sj≠i * would require n additional model evaluations. In addition, 
relevant parameter combinations would have to be estimated in advance. Thus, such in-
dices are omitted in the following evaluations. 

3.2. Computational Implementation 
A computational procedure to evaluate models is developed next. In general, it is 

based on the previously described computation of the original sensitivity indices in Sec-
tion 2.2. An estimation of the modified sensitivity indices by correlation properties is no 
longer possible since the influence of reduced variances and the importance of a parame-
ter would be mixed. A correlation coefficient analogue to the one in Equation (12) would 
still identify an important parameter even if its variance cannot be reduced. This is con-
trary to the basic idea of the modified sensitivity indices. 

First, two sample matrices A* and B are determined analogously to the procedure in 
Section 2.2. Since the indices are no longer determined with correlation coefficients ap-
proach, it does not matter, whether they are stochastically independent or not. However, 
the pre-defined correlation within the matrices (usually the parameters are supposed to 
be independent) still needs to be maintained. Now, A* contains the realizations of reduced 
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variance; B contains the realizations with the highest (initial) scatter. As before, both result 
vectors a* and b are evaluated by employing the model. 𝒂∗ = 𝑌(𝑨∗) = 𝑌(𝑋௜∗) (26) 𝒃 = 𝑌(𝑩) = 𝑌൫𝑋௜,଴൯ (27) 

Next, further q matrices Ci* are generated. These matrices are assembled mainly from 
realizations of matrix B. Only column i comes from matrix A*. For each ci* the model 
needs to be evaluated again n times. 𝒄𝒊∗ = 𝑌(𝑪௜∗) = 𝑌൫𝑋௝ஷ௜,଴, 𝑋௜∗൯ (28) 

Finally, the computation of the modified sensitivity index follows analogue to Equa-
tion (24). 𝑆௜∗ = 1 − 𝑉(𝑐௜∗) − 𝑉(𝑎∗)𝑉(𝑏) − 𝑉(𝑎∗) = 𝑉(𝑏) − 𝑉(𝑐௜∗)𝑉(𝑏) − 𝑉(𝑎∗) (29) 

4. Application Case: A Model for Fatigue Lifetime Prediction of Pre-Stressed Concrete 
Bridges 

The variance-based sensitivity indices were modified to analyze a complex stochastic 
model, which was set up to predict the residual fatigue lifetime of aged pre-stressed con-
crete bridges. As a reference serves a 50-year-old bridge in Germany [42]. Since the model 
includes, among other things, a finite element computation of the structural response and 
accumulation of damage over time, it is numerical and nondifferentiable. It involves in-
teractions and uncertainties induced by the variance of the parameters. These different 
individual variances can be reduced, e.g., by on-site measurements, but, depending on the 
measurement methods and the individual aleatoric uncertainty, not to the same extent. 

4.1. Reference Structure and Measurements 
The reference structure for fatigue damage prediction is a 303 m long pre-stressed 

concrete bridge located in Düsseldorf, Germany (Figure 2). Since 1959, the box-girder-
bridge has connected Düsseldorf’s city center to the German highway system. As it was a 
usual construction technique of that time, coupling joints connected consecutive construc-
tion parts and were located in each span at about one-fifth of the span length. The post-
tensioned tendons had in general a parabolic profile, only few tendons ran straight along 
the upper and lower edges. Shortly after construction, first cracks were detected at the 
coupling joints. Because of the cracks and because it is a well-known weak point of aged 
bridges, fatigue of the tendons at the coupling joints was focused on during measurements 
and analyses. 

 
Figure 2. Reference structure Pariser Straße in Düsseldorf, Germany—side and top views along with 
a general cross-section. 
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On-site, different measurements were carried out on the structure. In view of its cer-
tain deconstruction and replacement, both destructive and nondestructive tests could be 
performed. To serve as a reference, many different measurements were carried out to 
cover a wide range of potential impacts increasing the accuracy. Here, the geometry was 
determined by length measurements on-site while the strength of concrete and of the pre-
stressing steel were evaluated on concrete cores and steel samples in the lab. Additionally, 
a strain monitoring of the pre-stressing steel and the temperature distribution (see Figure 
3) was performed for several weeks. 

 
Figure 3. Strain and temperature monitoring of the reference structure. 

4.2. Fatigue Lifetime Prediction Model for Pre-Stressed Concrete Bridges 
An accurate prediction of the residual lifetime of pre-stressed concrete bridges, which 

are prone to fatigue, is hardly possible [43,44]. The special characteristic of high-cycle fa-
tigue is sudden failure after many thousands or even millions of load cycles. For that, the 
fatigue damage progress is usually determined by extrapolating the frequency of calcu-
lated stress ranges from changing loads based on load models from the codes (e.g., [45]). 
Typical sources of uncertainty in the lifetime prediction for pre-stressed concrete road-
bridges are: 
• estimation and prognosis of loads (traffic loads and frequencies, temperature loads); 
• calculation of stresses, including the nonlinearity after cracking (typically affected by 

the structural FE-model, cross-sectional and geometric parameters, material param-
eters, and stiffness); 

• fatigue-related properties of the material resistance (represented by the S–N curve). 
The model considered here is nonlinear, time-dependent, and able to predict the fa-

tigue lifetime TFL of a pre-stressed concrete road-bridge, based on the accumulated fatigue 
damage D [46]. Fatigue failure occurs at damage D = 1 and is calculated by Miner’s rule 
[47,48]: 𝐷 = ෍ 𝑛௜𝑁௜ ≤ 1௜  (30) 

Load frequencies ni arise from traffic counts and prognosis and relative frequencies 
of individual vehicle types according to Eurocode 1–2 [45]. Load cycles until failure Ni are 
obtained from the S–N curve (Figure 4) according to the stress ranges Δσi. Stress ranges 
are determined at different load levels i by combining a structural model and an iterative 
computation method of stresses. For convenience, the internal forces have been deter-
mined on a linear-elastic FE beam model (Figure 5) separated from the computation of 
stresses on cross-sectional level to reduce the computational costs. An advantage of this 
approach is that superposition of the internal forces can still be applied for all load cases 
and evaluations of the complex FE-model can be reduced. Then the stresses are computed, 
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employing an iterative procedure by Krüger and Mertzsch [49] to get accurate stresses in 
cracked concrete conditions. To also cover non-cracked (linear elastic) conditions, the orig-
inal approach was slightly modified and now permits the neutral strain fiber to lie outside 
the cross-section (0 < ξ ≤ 2, with ξ = x/d and x being the height of compression zone and d 
the effective height), too. 

 
Figure 4. Typical S–N curve for high-strength steel and its variables indicated by arrows. 

 
Figure 5. Finite-element model of the reference structure; beam elements (cross-sections for visual-
ization) and boundary conditions by springs and supports. 

That way, all stress ranges that are relevant for fatigue are treatable uniquely. In ad-
vance, the approach was checked to be sufficiently accurate and significantly reduces the 
computational effort for repeated simulation runs in comparison to a more detailed fa-
tigue lifetime prognosis as presented elsewhere [50]. 

The evolution of fatigue damage is a nonlinear time-dependent process (exemplified 
in Figure 6), which is influenced, i.a., by creep and shrinkage and a global increase of 
traffic loads and frequencies (cf. Figure 6 and [43]). Hence, fatigue lifetime is usually de-
termined by damage accumulation until failure occurs (Equation (30)). The simulations 
here aim to determine the total fatigue damage accumulated in 250 years D(t = 250 a). In 
total, five time intervals (Δt = 50 a), are assumed to cover the prediction period. Obviously, 
this is a quite rough discretization of time—especially for the first years, where the gradi-
ents are usually steep—but it was necessary to reduce the computational costs. 
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Figure 6. Damage evolution from a deterministic model with time-dependent stress ranges and 
three different approaches of the load frequency. 

Creep, shrinkage and relaxation reduce the pre-strain in the tendons as a function of 
time. To cover creep and shrinkage, Bažant and Baweja’s model B3 [51] has been incorpo-
rated and simplified to a scaling function aCS(t) of the reduced pre-stress (details in [46]). 
Furthermore, hardening of concrete (compressive strength fc(t) and Young’s modulus Ec) 
is considered by a root function according to Eurocode 2 [52]. 

For traffic loads, the detailed fatigue load model FLM 4 from Eurocode 1–2 [45] was 
applied. It consists of five standardized truck types that are representative for heavy-
weight traffic in Europe. For convenience and to reduce the computational costs, the eval-
uations are restricted on truck type 3 of FLM 4 since it causes the highest stress ranges on 
the reference structure [50]. Mathematically, this simplification is conservative and deliv-
ers a lower bound of predicted lifetimes. Next, traffic- and temperature-induced stresses 
are superposed, while the latter ones have been computed from a histogram of discrete 
frequencies of linear vertical temperature gradients ΔT with time [53]. 

All the effects described before are considered in the model by 16 parameters: 
• the width of the deck-slab bf, which represents the variability of the entire geometry; 
• the effective height dp1 of the pre-stressed cross-section concerning tendon layer no. 

1; 
• a scaling factor for pre-stress losses by creep and shrinkage aCS; 
• five (relevant) linear temperature gradients ΔTi; 
• a scaling factor w3 for the traffic loads from FLM 4, truck no. 3; 
• the cross-sectional area of a tendon Ap1; 
• Young’s moduli of concrete Ec and pre-stressing steel Ep; 
• two parameters to describe the S–N curve: its knee point Δσ(N*) at 106 load cycles 

and the slope of the high-cycle fatigue range (k2); for simplification k1 is set equal to k2. 
These parameters are all subjected to uncertainty (cf. Table 1). Following a probabil-

istic approach, their scatter can be captured by normal and log-normal probability density 
functions (PDF). Table 1 also provides individual means and variances. 
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Table 1. Stochastic variables with initial (original) distribution characteristics (μi,0, σi,0) and reduced variances (σi*), as well 
as Sobol’s sensitivity indices. 

Variable i Distribution 
Orig. Distribution Improvement Sensitivity Indices 
μi,0 CVi,0 CVi* Vi*/Vi,0 Si STi 

Pre-strain εp(0) [‰] N 2.175 0.046 0.014 0.09 0.05 0.12 
Young’s modulus of steel Ep [N/mm2] N 205,000 0.030 0.024 0.63 ~0 0.06 
Scaling factor for creep and shrinkage aCS [-] N 1 0.100 0.050 0.25 0.18 0.26 
Young’s modulus of concrete Ec [N/mm2] LN 33,000 0.091 0.045 0.25 0.02 0.04 
S–N curve: 

LN 120 0.008 0.063 0.88 0.11 0.11 
knee point Δσ(N*) [N/mm2] 
slope k2 [-] LN 7 0.071 0.043 0.36 0.004 0.01 

Width of the deck-slab bf [m] N 4.95 0.101 0.001 <0.01 0.01 0.05 
Area of a tendon Ap1 [cm2] N 26.55 0.016 0.007 0.21 0.01 0.04 
Effective height for tendon layer 1 dp1 [m] N 1.31 0.008 0.002 0.04 0.002 0.02 
Gradient of load cycles per year dn/dt N 15,000 0.333 0.317 0.9 0.02 0.02 
Scaling factor for FLM4-type 3 w3 [-] N 1 0.100 0.100 1 ~0 0.05 
Temperature gradients (scaled):  

1 0.008 0.141 0.5 ~0 0.02 
ΔT(−4 K) N 
ΔT(−5 K) N 1 0.200 0.141 0.5 0.01 0.04 
ΔT(−6 K) N 1 0.200 0.141 0.5 0.06 0.18 
ΔT(−7 K) N 1 0.200 0.141 0.5 0.18 0.29 
ΔT(−8 K) N 1 0.200 0.141 0.5 0.14 0.24 

In addition to the original distribution parameters (μi,0, CVi,0), the reduced variances 
(as improved variation coefficient CV* with aleatory uncertainty only) are summarized in 
Table 1. The ratios of improved to original variances V*/V0 = σ*²/σ0² are a measure to assess 
the improvement of a single parameter. For values close to zero the improvement is sig-
nificant, for Vi*/Vi,0 = 1 there is no reduction of the variance (by measurements). The given 
values are assumptions based on measurement data from the reference structure and in-
formation from the literature. 

Original variance-based sensitivity indices Si and STi according to Section 2.1 (Figure 
7, left) and reduced variances (as improved standard deviations σ* and as ratios of im-
proved to original variances V*/V0) are given as well in Table 1. Before the sensitivity in-
dices are determined, the result is logarithmically transformed (yi = log(xi)) to be more 
robust. Consequently, the data appears Gaussian distributed. 

 
Figure 7. Original and total (left) versus modified sensitivity indices (right) for the reference bridge. 

4.3. Stochastic Lifetime Prediction, Sensitivity Analysis and Evaluation of Modified Sensitivity 
Indices 

The results of stochastic predictions of fatigue lifetime by Monte Carlo simulation are 
given in Table 2. They document a prognosis result when scatter of one single parameter 
is reduced by monitoring. More precisely, the table contains 16 sets of lognormal distri-
bution characteristics LN(λ,ζ), means λ and standard deviations ζ, of accumulated dam-
age D after 250 years. The shape of the distributions is assumed to be lognormal based on 
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test statistics according to Kolmogorov–Smirnov (level of significance α = 0.05). Each set 
is determined based on n = 100 simulations for each parameter (n (2 + q) = 1800). 

Table 2. Improved distribution parameters, specific improvements of the target variable and modified sensitivity indices. 

Variable i 
Distribution Characteristics 

When i Is Improved 
Relative Fractile 

Change 

Mod. 
Sensitivity 

Index 
λ ζ D0,90 D0,99 D0,90 D0,99 Si* 

Pre-strain εp(0) [‰] −1.94 3.189 8.535 238.8 +11% +16% 0.09 
Young’s modulus of steel Ep [N/mm2] −1.93 3.254 9.350 280.2 +1% +1% 0.001 
Area of the tendon Ap1 [cm2] −1.94 3.243 9.156 271.3 +3% +4% 0.02 
Effective depth of the tendon dp1 [m] −1.93 3.243 9.283 275.0 +% +3% 0.02 
Scaling factor creep and shrinkage aCS [-] −1.95 3.026 6.851 161.8 +31 % +45% 0.29 
S–N curve:        

knee point Δσ(N*) [N/mm2] −1.92 3.236 9.291 273.2 +2% +4% 0.03 
slope k2 [-] −1.93 3.249 9.324 278.0 +1% +2% 0.01 

Young’s modulus of concrete Ec [N/mm2] −1.97 3.245 8.893 263.9 +7% +7% 0.01 
Width of the deck-slab bf [m] −1.96 3.235 8.857 260.1 +7% +9% 0.03 
Gradient of load cycles in time dn/dt −1.93 3.257 9.406 282.7 +0% +0% ~0 
Scaling factor FLM4-type 3 w3 [-] −1.92 3.262 9.556 288.7 −% −2% ~0 
Temperature gradient:        
 ΔT(−4 K) −1.96 3.284 9.469 292.8 −0% −4% ~0 
 ΔT(−5 K) −1.98 3.260 9.004 271.4 +5% +4% ~0 
 ΔT(−6 K) −2.08 3.201 7.519 213.2 +23% +26% 0.07 
 ΔT(−7 K) −2.25 3.094 5.570 141.1 +46% +53% 0.20 
 ΔT(−8 K) −2.19 3.143 6.268 167.1 +38% +43% 0.14 
“best” model a* with V* −2.92 2.349 1.099 12.8 +100% +100% - 
initial model b with V0 −1.93 3.255 9.433 283.0 ±0 ±0 - 

For comparison the characteristics for the initial model b (no improved variances) 
and the “best” model a* (all variances improved) are listed in the lower rows, too. Addi-
tionally, two columns of the prognosis result’s fractiles D0,90 and D0,99 have been computed 
as characteristic values. For the fatigue damage, the upper bound of the distribution is of 
interest and focused. Additionally, in comparison to the improvement from the initial 
model (b) to the best model (a*) the individual gains are quantified by relative specific 
improvements in the 6th and 7th column. The modified variance-based sensitivity indices 
are determined according to Equation (29) and are given in Table 2. They are also shown 
in Figure 7, right. 

Next, original (Si and STi) and modified sensitivity indices (Si*) are opposed in Figure 
7. For the presented fatigue lifetime model, at least six different variables show a signifi-
cant impact (Si and STi) on the variance of the model. As a result of non-uniformly im-
proved variances the results of the modified sensitivity indices (Si*) are individually 
shifted in comparison to the original sensitivity indices Si and STi in Table 2. Obviously, 
only relevant parameters characterized by a high sensitivity index STi and a seriously re-
duced variance (σi,0 >> σi*) lead to a significant variance reduction of the model. In contrast, 
a parameter without any variance reduction (σi,0 = σi*), like the scaling factor of traffic loads 
w3, does not change the model’s variance. 

In total, three variables possess the highest original sensitivity indices: two tempera-
ture gradients ΔT(−7K), ΔT(−8K) and the scaling factor for creep and shrinkage aCS. Since 
the variance of aCS can be reduced at most (cf. Table 1) it also delivers the highest modified 
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sensitivity index Si* (Figure 7, right)—as expected. The knee point of the S–N curve Δσ(N*) 
is a moderately important variable (Si ≈ STi ≈ 0.11), but its variance can hardly be reduced 
by measurements. Thus, it exhibits a low modified sensitivity index Si* = 0.03. 

The impact of individual improvements is illustrated by four probability density 
functions (PDF) in Figure 8. Referenced is the original model Y0 with the highest vari-
ance—given by the computational result in b and marked by a dashed black line. This 
distribution function represents the initial prediction of the fatigue lifetime, having little 
knowledge about the parameters. Its total scatter comprises both, aleatory (random) and 
epistemic (lack of knowledge) parts. The “best” prediction model Y* using the computa-
tional result in a* yields another pdf marked as a solid black line in Figure 8. It visualizes 
the response when all variances are reduced to the greatest extent. Then the scatter is 
caused by aleatory parts uniquely. Compared to Y0 the variance of Y* is significantly lower 
while the mean is shifted, too. 

 
Figure 8. Probability and cumulative density functions of the original (Y0) and the best model (Y*) 
along with two cases when only one parameter’s scatter is reduced by monitoring. 

Other cases when only one parameter’s variance is reduced by monitoring lie be-
tween these limit curves. The same holds true for the cumulative density functions (CDF) 
shown on the right in Figure 8. That way, the impact of individual measurements can be 
evaluated. Parameters that provide the closest shift to the “best” model yield the greatest 
benefit, if monitored. In this example, the scaling factor for creep and shrinkage aCS and 
the linear temperature gradient ΔT(−7 K) are the most important. They shift both distri-
butions (CDF and PDF) significantly towards the best model’s one. However, an irrele-
vant parameter would yield curves similar to the initial one. 

4.4. Convergence 
For reliable results, many thousand simulation runs are required as can be read from 

Figure 9 showing the convergence of the fatigue lifetime model. For the convergence plot 
the number of simulations n was increased incrementally from n = 100 to 104. For each n, 
the modified sensitivity indices were determined ten times with different sampling sets 
to assess their variation around the mean xm by means of the 5% and 95% fractiles (xm ± 
1.645∙σ, assuming a Gaussian distribution) as a measure of variance. The results of the 
modified sensitivity indices for some of the 16 parameters are drawn in Figure 9. The se-
lection comprises three types of parameters: 
• The scaling factor of the pre-stress loss aCS in Figure 9 top left is a relevant parameter 

(STi-value is high) and can be reduced significantly (Vi*/Vi,0 << 1). Therefore, its mod-
ified sensitivity index Si* is expected to be high. 

• The knee point of the S–N curve Δσ(N*) in Figure 9 top right is a relevant parameter 
(high STi-value) without significant variance reduction (Vi*/Vi,0 ≈ 1); thus, Si* is ex-
pected to be low. 

• Third, the effective depth of the pre-stressing steel (dp1) on the lower left of Figure 9 
has a low (original) total sensitivity index STi and even in case of a significant reduc-
tion of its variance, the modified sensitivity index can be expected to be low. 
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All three clearly converge for 104 simulations. At least 5000 simulation runs are rec-
ommended in this case. For smaller sample sizes, all modified sensitivity indices possess 
large variance. For less than 1000 simulations, the results should not be used at all. Then, 
some results with too-small sample sizes take on values even outside the reasonable range 
0 ≤ Si* ≤ 1. As it could be expected, this is more likely for Si*-values close to zero. On the 
lower right, Figure 9 illustrates the convergence by means of the standard deviation. All 
three parameters converge similarly. Differences are seen purely caused by chance. 

 
Figure 9. Convergence of the modified sensitivity index for three parameters of the lifetime predic-
tion model. 

5. Conclusions 
An extension to the established method of variance-based sensitivity indices origi-

nally proposed by Sobol’ is developed. The modified sensitivity indices are suited to quan-
tify potential benefits of measurements and monitoring measures in advance. The en-
hanced indices are mathematically derived, and its numerical implementation based on 
stochastic simulation is exemplified on a model for fatigue lifetime prediction of a refer-
ence structure. 

For the 50-year-old pre-stressed concrete bridge in Germany, the indices indicate that 
the measurement of residual pre-stress in the tendons after creep and shrinkage and the 
measurement of temperature loads are most meaningful. It can be found that the best pa-
rameters to be measured (high Si*) are those impairing a model’s variance significantly 
(characterized by high-variance-based indices Si and STi) and simultaneously having a 
great potential for variance reduction by monitoring. In comparison to others, they pos-
sess the highest modified sensitivity indices. 

To support experts’ sound decisions on qualified measures to take the complex in-
teraction of variance reduction and its influence on a model can be assessed in advance 
and quantified with reasonable effort by the newly proposed modified sensitivity indices 
Si*. In view of an ever-increasing stock of aged infrastructure buildings worldwide, the 
modified indices might help to save money and resources, avoiding unnecessary meas-
urements in the future. 

Author Contributions: Conceptualization, D.S., M.A.A. and P.M.; methodology, D.S.; software, 
D.S.; investigation, D.S.; data curation, D.S.; validation, D.S. and M.A.A.; writing—original draft 
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