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Abstract

The residual structural lifetime of concrete bridges is often limited by fatigue of the

prestressing steel. In practice, numerical calculations of the structure are combined

with Miner's rule—based on load frequencies and stress amplitudes—to estimate the

damage. Thereby, various parameters must be accounted for whereof a few are actu-

ally relevant. Structural monitoring is valuable to increase the accuracy of lifetime

predictions, but usually experts choose the right parameters on experience only. A

more objective assessment can be reached by sensitivity analysis. A powerful method

is provided by Sobol's variance-based indices. They quantify the influence of a single

parameter's variance on the model's total variance and account for interactions in

nonlinear models, too. Exemplified on a reference structure, sensitivity indices are

determined. Meanwhile specific characteristics like the nonlinear behavior of con-

crete after cracking are considered. In this case, the key elements of lifetime predic-

tion turn out to be the time-dependent losses of prestress and the traffic loads.
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1 | INTRODUCTION

Fatigue is commonly restrictive when predicting the residual lifetime of

old and degraded concrete bridges.1 However, it involves various

uncertainties and enters significant scatter in forecasts.2–4 Structural

monitoring of key parameters5–7 might extend the residual lifetime sig-

nificantly by reducing the uncertainty of the input parameters of the

prognosis.8 The crucial question concerns the choice of the right param-

eters to measure,9 which shall be answered by the results of this paper.

Especially for fatigue of prestressed concrete bridges under traf-

fic, many parameters need to be incorporated into a complex numeri-

cal model.2,4 Since the bearing behavior of prestressed concrete is

significantly nonlinear after cracking, the relevant parameters are not

known beforehand. They may even change over time.9 To consider all

these aspects, a comprehensive numerical model was developed,

which is presented here.

While uncertainty analysis quantifies the variability of a model out-

put based on uncertain input (e.g., References 10–12—results for lifetime

predictions, e.g., see Reference 13)—sensitivity analysis methods

were developed to identify the most relevant input parameters to

the model output, or more precisely, to its variability.14 Con-

versely, also minor relevant parameters are identified, which affect

the output only to a minor extend.15 To reduce computational cost

in further evaluations, these parameters can be fixed to constant

values. In this paper, a sensitivity analysis of a lifetime prediction

model for concrete bridges is carried out to determine the impor-

tant and less relevant parameters. Consequently, fixing less rele-

vant parameters can be done based on the findings here.

There are many different methods available for sensitivity ana-

lyses, which involve varying computational costs. Starting from local

derivative-based methods, nowadays global sensitivity analyses14,16

are to be preferred for complex and nonlinear models.17 Global
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methods can be categorized into quantitative18 and qualitative19 ones.

While the latter come along with a reduced computational cost, they

should preferably be used to identify less relevant parameters, as it is

possible with the elementary effect-method by Morris.19,20 An applica-

tion of this to engineering structures and their lifetime predictions is

given in Reference 21. In contrast, variance-based global sensitivity ana-

lyses are a powerful tool to quantify the individual impact of a parame-

ter on the model output.18 One of the most sophisticated types are the

variance-based sensitivity indices by Sobol',16 which are applied in the

context of the work presented here to a complex computational model.

The objective of this paper is to determine the most relevant

parameters in lifetime predictions of prestressed concrete bridges

using sensitivity analysis methods. The selected method for this pur-

pose is Sobol's variance-based sensitivity indices, which are outlined

in Section 2. To consider as many different elements of prognosis as

possible, a complex and comprehensive stochastic model for the life-

time prediction was developed, which comprises various uncertain

parameters in the areas of loads, structure, time-dependent effects,

material, and resistance. Section 3 describes the components of the

modular model. Exemplified on a reference structure, some assump-

tions in the model were generalized to produce results which are valid

for similar bridge types. For other bridge types, the model can be

adapted but new sensitivity analyses are recommended. In Section 4,

the results of the variance-based sensitivity indices are presented. For

the computation, a new and improved approach for sampling is intro-

duced, which was developed to increase the accuracy for a small sam-

ple size. Finally, conclusions are presented in Section 5.

2 | SENSITIVITY ANALYSIS METHOD

2.1 | Variance-based sensitivity indices

Variance-based sensitivity indices aim for analyzing complex models like

nonlinear, nonmonotonic discontinuous systems.22 The impact of a model

parameter Xi on the variability of the output Y can be quantified by analy-

sis of variance (ANOVA) techniques. Therefore, the total variance of the

output is decomposed into the variances of single parameters and into

(co-)variances induced by correlation between the parameters. To assess

the impact of the parameters, single parameters are fixed temporarily.

Let the model be a simple function of q input parameters Xi at

first and assume all Xi are square-integrable. Thus, mathematically

each parameter possesses a variance V Xið Þ<∞

Y¼ f xð Þ¼ f X1,X2,…Xqð Þ: ð1Þ

The model spans a q-dimensional unit hyperspace Ωq and can be split

into 2q components by ANOVA high-dimensional model representa-

tion.23,24 It comprises a single constant term of order zero f0, q linear

terms fi and q over 2 quadratic components fij, etc.

Y¼ f xð Þ¼ f0þ
Xq
i¼1

fi Xið Þþ
Xq
i¼1

Xq
j> i

fij XiXj

� �þ…þ f1,2…q X1,X2,…Xqð Þ� �
:

ð2Þ

Indeed, decomposition is not unique, but Sobol'16 has proven all terms

being orthogonal assuming all means but f0 being zero. Thus, f0 equals

the expectation of Y

f0 ¼ E Yð Þ: ð3Þ

Moreover, the higher order components are obtained from condi-

tional expectations23

fi Xið Þ¼ E YjXið Þ�E Yð Þ¼
ð1
0

…
ð1
0

f xð Þdx�i� f0: ð4Þ

Therein, the index—i denotes all dimensions but i, analogously—{i,j} all

dimensions but i and j

fij Xi:Xj

� �¼ E YjXi ,Xj

� �� fi� fj�E Yð Þ
¼
ð1

0
…
ð1

0
f xð Þdx� i,jf g � fi Xið Þ� fj Xj

� �� f0: ð5Þ

The total variance is gained by integration of the squared function

V Yð Þ¼ E Y2
� �

�E Yð Þ2 ¼
ð
Ωq

f2 xð Þdx� f20: ð6Þ

Due to orthogonality, the variance of Y can be decomposed analo-

gously to Equation (2) into the input variances Vi ¼V fi Xið Þð Þ and con-

tributions due to parameter interaction Vij

V Yð Þ¼
Xq
i¼1

Viþ
Xq
i¼1

Xq
j> i

Vi,jþ…þV1,2…q
� �

: ð7Þ

Employing Equation (4), the variance due to a single parameter

i follows to V fi Xið Þð Þ¼V E YjXið Þð Þ. Related to the total variance, this

directly leads to the first-order sensitivity indices Si, also called direct

effects, according to Sobol'16

Si ¼V fi Xið Þð Þ
V Yð Þ ¼V E YjXið Þð Þ

V Yð Þ : ð8Þ

Higher order sensitivity indices (Sij up to S1,2,…q) can be obtained anal-

ogously if the parameter interaction fij Xi,Xj

� �
is also considered.

From Equations (7) and (8), it follows that the sum of all 2q-1 sen-

sitivity indices (all first and higher order ones) is always ΣSi = 1. More-

over, in case of additive models, all first-order sensitivity indices

always sum up to 1 while in nonadditive models, the sum might be

smaller than 1, too. Then, the difference 1 � ΣSi indicates the amount

of interaction in the model.

The model's total variance V(Y) can be expressed as the sum of

conditional variances analog to Equation (7) and further variances.

Again, the conditional variances are obtained fixing all parameters

but Xi, while the further ones result from Y if Xi is fixed to x*i

144 SANIO ET AL.
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simulation-wise. The result in nonlinear models might depend on the

choice of x*i , too. For example, this is true for S-N-curves in fatigue

lifetime estimations. So, the expected value of the conditional vari-

ances VX�i YjXi ¼ x*i
� �

for all x*i employs EXi VX�i YjXi ¼ x*i
� �� �

, in short

E V YjX�ið Þð Þ. Finally, the total variance reads

V Yð Þ¼V E YjXið Þð ÞþE V YjXið Þð Þ¼V E YjX�ið Þð ÞþE V YjX�ið Þð Þ: ð9Þ

Dividing Equation (9) by V(Y) yields again the first-order index. Addi-

tionally, a second term for the variance due to interaction with other

parameters is obtained. The latter one subtracted from 1 gives the

total sensitivity index, also called total effect STi
18

STi ¼1�V E Yð jX�iÞð Þ
V Yð Þ

¼
Viþ

P
j, j≠ i

Vijþ
P

j, j≠ i, j≠ k

P
k,k ≠ i, k ≠ j

Vijkþ…þV1,2…q

V Yð Þ
¼ Siþ

X
j, j≠ i

Sijþ
X

j, j≠ i, j≠ k

X
k,k ≠ i, k ≠ j

Sijkþ…þS1,2…q: ð10Þ

Thus, the total sensitivity index STi additionally comprises all

parameter interactions. Moreover, STi is always greater than Si. If STi is

close to Si, interaction is of minor importance. For purely additive

models, the sum of all parameters total sensitivity indices is 1, other-

wise a value greater than 1.

2.2 | Numerical determination of variance-based
sensitivity indices

Originally, Saltelli et al.14 presented an algorithm to compute

both indices Si and STi efficiently. Later on, Glen and Isaacs25

modified the method to compute the sensitivity indices from cor-

relation coefficients. Due to their modification, the number of

necessary simulations n was significantly lowered from n2 to n�(q
+ 2), wherein q denotes the number of parameters involved in

the model. More details can be found in Glen and Isaacs25 and

Saltelli et al.14

First, two independent matrices A and B both of size (n � q) must

be generated by Monte-Carlo Sampling. For a practical implementa-

tion, Saltelli et al.18 recommend a single matrix with a doubled number

of columns (n � 2�q) containing (quasi-)random numbers26 and to gen-

erate the two matrices A and B thereof

A¼
x 1ð Þ
1 � � � x 1ð Þ

i

..

. � � � ..
.

x nð Þ
1 � � � x nð Þ

i

� � � x 1ð Þ
q

� � � ..
.

� � � x nð Þ
q

2
6664

3
7775; B¼

x 1ð Þ
qþ1 � � � x 1ð Þ

qþi

..

. � � � ..
.

x nð Þ
qþ1 � � � x nð Þ

qþi

� � � x 1ð Þ
2q

� � � ..
.

� � � x nð Þ
2q

2
66664

3
77775: ð11Þ

From both, q further matrices Ci (i = 1,2,…,q) are generated by

substituting columns. While the ith column comes from A, all others

columns come from B27

Ci ¼

x 1ð Þ
qþ1 � � � x 1ð Þ

qþi�1

..

. � � � ..
.

x nð Þ
qþ1 � � � x nð Þ

qþi�1

x 1ð Þ
i

..

.

x nð Þ
i

x 1ð Þ
qþiþ1

..

.

x nð Þ
qþiþ1

� � � x 1ð Þ
2q

� � � ..
.

� � � x nð Þ
2q

2
666664

3
777775: ð12Þ

For the parameter sets in A, B, and Ci, the output by means of n-

dimensional vectors a, b, and ci is obtained from model simulation.

Altogether, n�(q + 2) simulation runs are necessary to gain the output.

The first-order index Si follows as Pearson's correlation coefficient

between a and ci when all results Y of the model for the matrices A

and B are used to get enhanced means μY and variances σ2Y

Si ¼ 1
n�1

Xn
m¼1

am�μy
� �

ci,m�μy
� �

σy2
: ð13Þ

Interpretation of an index determined from correlation is straightfor-

ward. Only in column i, A and Ci possess equivalent values. Then, if Xi

is significant for the output, the correlation between a and ci is high,

else the sensitivity index is low. Similarly, the total sensitivity index STi

can be derived and interpreted. Since B and Ci possess the same

values for all entries but in column i (values of Xi), a high correlation

(small STi, see Equation 14) results if the impact of Xi is small

STi ¼1� 1
n�1

Xn
m¼1

bm�μy
� �

ci,m�μy
� �

σy2
: ð14Þ

3 | NUMERICAL MODEL FOR LIFETIME
PREDICTIONS OF CONCRETE BRIDGES

3.1 | Prediction model

To predict the structural lifetime of an aged prestressed concrete

bridge under fatigue, a modular model is developed. This model com-

prises stochastic and time-dependent parameters. Some processes

like creep even show both characteristics. To reduce the numerical

effort, some parameters are idealized and simplified in advance. For

example, time-dependent parameters are replaced by equivalent,

deterministic, and scalable trends (see Section 3.3). They have been

analyzed in advance and identified as minor relevant.28 The single

modules are presented separately in the subsequent sections.

As a representative application case, a degraded posttensioned

prestressed concrete flyover in Düsseldorf, Germany serves as a refer-

ence structure (Figures 1 and 2). Built in 1959, it carried two traffic

lanes over a total length of 302 m. The box girder has a constant

height of 1.43 m, increasing web widths toward the support axes and

a variable width toward the separating branches.

The prestressing consists of bar tendons (; 26 mm) made of high-

strength steel St 80/105 (fpk = 1050 N/mm2) and are placed in

grouted metal-sheet ducts. Most of them run affine to the bending

SANIO ET AL. 145
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moments induced by dead loads, only a few run straight in top- and

bottom slab. From that time standard (DIN 422729), a maximum pre-

stress of 307 kN per tendon can be expected.

At the joints, only a part of all tendons is coupled, which is nowa-

days standard but rarely done in those years. Due to threaded con-

nections, coupling-joints are generally prone to fatigue and the more

connections exist in a section, the higher the danger of fatigue

is. Additionally, these construction joints often exhibit lowered tensile

concrete strength, little reinforcement amounts, and tend to nonlinear

stress distributions.30

3.2 | Structure, loads, and stress calculation

For numerical computation of the structure, a finite element model of

the bridge is set up. The hollow girder is discretized with linear beam

elements. Columns, foundations, abutments, and the additional sup-

ports (steel columns near the coupling joints) are idealized by springs.

Internal forces (bending moments and axial forces) are determined

from a linear-elastic calculation. So, actions on the structure induced

by dead-load, prestress, traffic, temperature, and settlements are all

computed. The linear calculation is helpful to separate the finite ele-

ment analysis from the stochastic evaluations on cross-sectional level.

In this way, uncertainty can be considered by scaling of the internal

forces according to the variability of the loads.

On cross-sectional level, the nonlinear distribution of stresses has

been computed on a layer model. Based on Bernoulli's hypothesis

(plane-remains-plane) the strain gradient is iterated until equilibrium

of internal and external forces is gained. To find the equilibrium, the

Simplex-Algorithm31 is applied. Once knowing the strains, axial (NR)

and bending resistances (MR) follow from Equations (15) and (16) by

integration over the cross-sectional area A. Therein, the tendons resis-

tance (index p) reflects the determinate part of the prestress

NR ¼
ð
A
σc zð Þdzþ

X
i

σs,i �As,iþ
X
j

σp,j �Ap,j , ð15Þ

MR ¼
ð
A
σc zð Þ � z dzþ

X
i

σs,i �As,i � ziþ
X
j

σp,j �Ap,j � zj: ð16Þ

The reinforcement is incorporated by five single rebar-layers (index s).

Each one idealizes the reinforcement as a smeared layer in distinct

position. For both, the prestressed tendons and the rebars, a linear-

elastic behavior is assumed. This is true in case of high-cycle fatigue

loads in typical frequencies n�106
� �

, where plastic deformation of

rebar and tendons is generally disregarded.28 In case of plastic defor-

mation, fatigue failure would occur after only a few load-cycles (low

cycle fatigue).

Resistance of concrete (index c) is activated for compression only

(negative strains), while tensile stresses are assumed to be zero in the

(precracked) coupling joint. Stresses are computed from a linear

stress-strain curve according to Eurocode 2-2.32 The layer model

allows the separation between different concrete classes in the top

slab (B450 equivalent to a current C30/37) and the web and bottom

slab (B300 equivalent to C20/25).

Stress ranges are caused by an alternating bending moment (ΔM)

from cyclic loading by traffic. The mean stress comes from a basic

bending moment (M0), induced by permanent and quasi permanent

loads. These loads comprise dead loads, slowly changing verticalF IGURE 1 Reference bridge at Düsseldorf, Germany. Source:
David Sanio
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F IGURE 2 Top and longitudinal view of the reference structure. Source: David Sanio
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temperature gradients (ΔTi), settlement induced constraints (ΔS), and

the indeterminate contribution of pre-stress (P0).

Real traffic loads are very diverse for different bridges and diffi-

cult to implement accurately to a model. For simplification, the fatigue

load model FLM 4 from Eurocode 1-233 has been employed, which

distinguishes five truck types. These types vary from a small (2 axes

200 kN total load, 4.50 m length) to a heavy (5 axes 490 kN, 11.0 m),

and a very long truck (5 axes, 450 kN, 14.1 m). Individual frequencies

for each type depending on the road class are given in Eurocode 1-2

as well.

Alternating bending moments result from positioning the tru-

cks from the FLM in the relevant load positions. Superposition

with steady loads, temperature, settlements, and prestress

delivers maximum and minimum bending moments (Mmax and

Mmin). In a next step, stress amplitudes are obtained from

the corresponding stresses and their difference

(Δσ¼ σ Mmaxð Þ�σ Mminð Þ). The stresses are evaluated at the represen-

tative coupling joint (3B in Figure 2).

3.3 | Time-dependent material behavior

Material properties of the steel practically do not change over time.

Concrete exhibits posthardening that increases its strength and stiff-

ness even after years. Based on the findings from Reference 28, the

compressive strength of concrete fc itself is minor relevant here. More

important is Young's modulus Ec which is correlated to the strength.

Thus, the compressive strength serves as a basic parameter to derive

Young's modulus and its evolution over time (t) according to the for-

mulas in Eurocode 2-2.32 The evolution of stiffness by posthardening

Ecm(t) is also taken from Eurocode 2-2 with fcm as concrete means

compressive strength after 28 days and a parameter s which depends

on the type of cement

Ecm ¼22000
fcm
10

� 	0:3

, ð17Þ

Ecm tð Þ¼ fcm tð Þ
fcm

� 	0:3

¼ fcm es 1�
ffiffiffiffiffiffiffi
28=t

p� �
fcm

0
@

1
A0:3

: ð18Þ

This time-dependent increase of the stiffness of the concrete changes

the stress-state on cross-sectional level, overlaying with creep and

shrinkage. This is accounted for via model B3, originally introduced by

Bažant and Baweja.34 The model gives a time-dependent increase of

concrete strains which lowers the prestress in the tendons. Many dif-

ferent creep-and-shrinkage-curves with parameter variations were

evaluated beforehand based on eight variable parameters

(cf. Reference 28). The result is a stochastic process of the creep fac-

tor as presented in Figure 3, which is generated by different realiza-

tions of model B3. For simplification, a factor to govern the relative

prestress losses with time has been derived thereof, which is consid-

ered in the simulations presented here. This factor reduces the

prestress as a nonlinear function of time. It is derived from the curves

in Figure 3 as the mean.

3.4 | Lifetime prediction by damage accumulation

Damage assessment relies on the linear accumulation hypotheses

according to Pålmgren35 and Miner.36 Although some weaknesses

are known for the model,37,38 it is still state of the art in lifecycle

analysis of rebars and prestressed tendons in concrete. For this

steel, the well-known double-logarithmic S-N-curve (Figure 4)

relates stress amplitudes Δσ to an expected number of cycles to

failure N

logN¼ logN*�k1=2 logΔσ� logΔσ N*� �� �
: ð19Þ

Dependent on the stress amplitude, two branches are defined by an

inclination parameter k1/2

k1=2 ¼
k1 f€urΔσ ≥Δσ N*� �
k2 f€urΔσ <Δσ N*� �

(
: ð20Þ

Partial damage Di is determined for different load levels i of Δσ

and accumulated according to Miner's rule

D¼
X
i

Di ¼
X
i

n Δσið Þ
N Δσið Þ : ð21Þ

Accumulation of all partial damages from erection at T0 to the times

associated with structural failure at D¼1 yields the structural life-

time TF

ðTF

T0

D tð Þdt¼1 )TF : ð22Þ

During accumulation and due to nonlinearly evolving gradients of

stress amplitudes and frequencies with time, the damage function D(t)

itself increases nonlinearly. To reduce computational efforts, the time-

dependent model parameters are evaluated at discrete time instants.

3 2 1 0

0,5

0,4

0,3

0,2

0,1
0

10
100

1000
104

ycneuqer
F

3 2 1 0

0,5

0,4

0,3

0,2

0,1
0

10
100

1000
104

ycneuqer
F

F IGURE 3 Evolution of creep factor as a stochastic process over
time. Source: David Sanio
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Precisely, a constant time interval of 10 years was used for the

investigations here.

3.5 | Traffic frequencies

Since years, traffic amounts, frequencies, and weights are increas-

ing worldwide. A trend expected to hold on in the future. In 2014,

the German ministry for federal transport published a prognosis

on the cargo amount (in tons � km) on German highways that is

expected to grow by another 39% from 2010 to 2030.39 By 2019,

it had already increased by 19% according to data in

Reference 40.

Thus and in consideration of the German guideline for

recalculation of bridges,41 a continuous increase of traffic loads from

the early 1950s was included in the model; also to account for for-

merly lower traffic loads on the roads at the time of erection of the

bridge.30 For simplification, a linear increase of heavy weight traffic by

15.000 trucks (=2%) per year was implemented.

3.6 | Stochastic analysis of structural lifetime
subjected to fatigue

The fatigue lifetime forecast from stochastic simulation considering all

uncertain model parameters by means of accumulated damages over

time is shown in Figures 5 and 6. All parameters have been generated

uncorrelated by Latin–Hypercube Sampling according to the distribu-

tion characteristics listed in Table 1. The impact of correlations

between the input parameters was analyzed in depth by Sanio et al.13

The stochastic forecast bases on 200 simulations of the fatigue

lifetime. Due to time-dependent effects (e.g., creep, shrinkage, con-

crete hardening, traffic amounts, and frequencies), these simulations

comprise a multitude of individual damage computations. Time is dis-

cretized in 10 years intervals (see Section 3.4) up to a maximum of

200 years. The initial traffic amount was set to 3.5�106 trucks per

year. For each time-step, the relevant temperature gradients ΔTi were

accounted for Reference 42, which were idealized as inner constraints

in corresponding frequencies.9 In total, five relevant temperature gra-

dients were combined to five truck-loads defined in FLM 4. Each

stress-amplitude results from the stress-difference at the upper and

lower load level. Thus, stresses in the tendons are computed 1000

times per entire lifetime simulation (20 time-steps, five temperature

gradients per time-step, five truck types per temperature gradient,

two stress levels per truck and stress range).

The histogram of accumulated damages obtained from simulation

is shown in Figure 5. The empirical cumulative density function is

given in Figure 6. The region of fatigue failure (D≥1) is gray-shaded.

Due to logarithmic scaling and supported by the higher order

moments distribution's skewness (g1 > 0) and kurtosis (g2 > 0) become

obvious. Kurtosis indicates a comparatively flatter distribution with

heavy tails.

Goodness of fit testing employing Kolmogorov–Smirnov's statis-

tic supports a log-normal distribution of data (gray in Figure 6) on a

significance level α = .05% while Anderson–Darling's more powerful

test rejects the hypothesis. Other distribution functions like the

Weibull's one cannot be established at all. Thus, due to lack of evi-

dence, the total damage is assumed log-normally distributed in the

remainder.

F IGURE 4 Typical S-N-curve for steel. Source: David Sanio
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4 | COMPUTATION OF SENSITIVITY
INDICES AND RESULTS

4.1 | General remarks

Sensitivity indices based on correlation coefficients follow from Equa-

tions (13) and (14). While the first-order index Si quantifies just the

direct impact of a parameter's variance V(Xi) on the variance of the

output V(Y), the total index STi also includes covariances regarding

parameter interaction (e.g., V(Xi,Xj) or V(Xi,Xj,Xk)).

For analysis of the lifetime prediction model of the reference

structure, 100 lifetime simulations have been performed. Nineteen

parameters are involved in the model (19 + 2)�100 = 2100 simula-

tions of damages accumulated after 200 years were already neces-

sary.14 Inclusion of covariances and higher order sensitivity indices as

well as an improved convergence behavior are all linked to more simu-

lations that have been waived due to the associated numerical effort.

Thus, the results for the reference structure exemplify the general

concept but are only conditionally universal. Nevertheless, they may

serve as representative benchmarks for similar structures and provide

guidance for others. As it is shown in Reference 28, greater numbers

of simulation are recommended.

4.2 | Sampling

The sample sets for model simulation are generated by drawing sam-

ples from stochastic populations. Thereby, the input of each parame-

ter is limited by intervals according to its associated distribution

function. Each simulation employs distinct datasets, so-called realiza-

tions. In this way, an originally continuous distribution function is dis-

cretized by a fixed number of realizations. In literature, a variety of

alternative methods for sampling exists.14,43 Besides random sam-

pling, also known as Monte-Carlo Sampling, enhanced methods like

Latin Hypercube sampling a derivative of the efficient stratified sam-

pling methods are well established.

The fundamental idea of all sampling methods is the same and

independent from the distribution being sampled. By inversion of the

distribution function F�1 yð Þ, samples xi are generated

F xð Þ¼ y, x¼ F�1 yð Þ: ð23Þ

A mathematically invertible distribution function is prerequisite (which

is practically not an issue), otherwise special procedures must be

employed that are not addressed here.

First, uniformly distributed data is sampled between the limits

zero and one 0 < y < 1ð Þ. Thereof, several values nsim are picked and

used as input with an inverted distribution function to gain sam-

ples with desired properties Xi. The only difference of all alterna-

tive sampling methods concerns the order of data being picked

from the uniform interval [0; 1] and how realizations are combined

to form a set if q variables are involved in the procedure. Besides,

in case of Latin Hypercube sampling employing the midpoint

approach, the only random element concerns the order of

permutation

xj ¼ xj1,xj2,…xjq
� �

, j¼1,2,…n: ð24Þ

Computation of sensitivity indices rests on two independent matri-

ces A and B, both containing n realizations of all q parameters. As

already discussed in greater detail in Section 2.2, the indices are

obtained from result vectors of combined matrices Ci and the origi-

nal matrices A and B. Fundamental is the independency of A and B,

since spurious correlation might occur and impair the sensitivity

indices otherwise.25

Saltelli et al.14 propose to generate a joint matrix of random num-

bers of the size (2n � q) by using a random sampling, see Figure 7A).

Afterward, it is split in half and realizations for A and B are generated.

TABLE 1 Distribution parameters for the model

Parameter i μi σi Distribution

Prestressing steel Prestrain εp
(0) (‰) 2.175 0.1 N(μ;σ)

Cross-sectional area of tendons Ap,i (cm
2) 26.55 0.424 N(μ;σ)

Slope of S-N-curve k2 (�) 7.0 0.5 LN(λ;ζ)

Loss of pre-stress (creep/shrinkage) aC+S (�) 1.0 0.1 N(μ;σ)

Concrete Concrete strength of web and bottom slab fc,w+bs (N/mm2) 38.0 5.0 LN(λ;ζ)

Concrete strength of deck slab fc,ds (N/mm2) 45.0 5.0 LN(λ;ζ)

Cement-dependent parameter for hardening s (�) 0.38 0.038 N(μ;σ)

Geometry Geometry via deck slab width bds (m) 4.95 0.50 N(μ;σ)

Vertical position of the tendon z0p1 (m) 1.31 0.01 N(μ;σ)

Position of the coupling joint xcj (m) — 0.1 N(μ;σ)

Loads Increase of traffic density dn/dt 15 000 5000 N(μ;σ)

Weight of trucks from FLM4 (scaled) w2 to w4 (�) 1.0 0.10 N(μ;σ)

Temperature gradient: ΔT (�4 to �8 K) 1.0 0.20 N(μ;σ)
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So, both matrices are independent. Sobol'16 specifically proposes to

use a random sampling based on quasi-random numbers.

The proposed modification involves a sampling with correlation

control and iterative adaption among the input. It aims at zero correla-

tion as granted by the unity matrix. The whole procedure of a sam-

pling with correlation control has been introduced by Iman and

Conover.44 Its principal idea is to change the entries within each col-

umn of the sampling matrix (here: size [n � 2q], Figure 7B) until the

target correlation is reached. Therefore, Cholesky decomposition, the

inverse standard-normal distribution and an auxiliary matrix are neces-

sary to iteratively approximate the target correlation. A detailed

description is presented by Helton and Davis.45 The proposed sam-

pling approach is briefly summarized in its key elements in the

remainder.

All q columns of matrix A contain realizations of the basic model

parameters Xi by Latin Hypercube sampling. Next, the realizations in B

are added as q further but independent basic parameters X0
i as shown

in light gray in Figure 7B). This ends up with a matrix (n�2�q) and an

associated correlation matrix with a doubled number of entries

(2�q�2�q); cf. Figure 7C). Here, the new correlation matrix still con-

tains the two original correlation matrices at the upper left and lower

right quadrants along its main diagonal. Added superscripts a and b on

the symbol of the correlation coefficient ρij index the associated

matrices A and B, respectively. The dark-gray-shaded quadrants aside

the main diagonal of the correlation matrix include the correlation

coefficients between the two matrices A and B. Entries along the sec-

ondary diagonals capture the correlation between the basic variables

Xi and X0
i from A and B. They quantify the de facto dependency of the

two matrices which is at best zero to grant unaffected result vectors a

and b.

The sampling procedure with correlation control is applied to the

matrix in Figure 7B). A target correlation matrix is defined, with the

previously described entries to be zero for independence. By repeat-

ing the procedure, the correlation was reduced to values <0.01 for

independent input.

4.3 | Results of sensitivity analyses

All sensitivity indices for the 19 model parameters according to

Table 1 are summarized in Figures 8 and 9. The first-order index in

the pie-chart (Figure 8A) presents the direct impact of all parameters

on the scatter of the response. The scaling factor of time-dependent

prestress losses (SaCþS ¼0:15), the exact location of the coupling joint

(Sxcj ¼0:05), and the load from truck type no. 3 of FLM 4 (Sw3 ¼0:26)

shows the greatest impact on the model uncertainty. By definition,

the sum of all Si is always smaller than 1 (ΣSi ≤1) and exactly 1 for

purely additive models,14 while here it yields ΣSi ¼0:49. Thus, rele-

vant interaction among parameters must be expected.

Besides simple variances V(Xi), total sensitivity indices STi

(Figure 8B) cover the impact of all covariances and thus parameter

interactions, too. They reflect the total impact of parameters on a

model. Besides the three parameters above

(ST,w3 ¼0:70, ST,aCþS ¼0:53, ST,xcj ¼0:30), the yearly increase of traffic

amounts dn/dt turns out being important (ST,n ¼0:27). Other parame-

ters do not impair the result significantly. The sum of all total sensitivi-

ties yields ΣSTi ¼1:93. Compared to ΣSTi ¼1 for purely additive

models, this indicates significant parameter interactions again.

Finally, the difference of total and simple sensitivity indices (STi �
Si, Figure 8C) is discussed. It quantifies the interaction of parameters

only. The above-identified parameters are supposed to interact mean-

ingful while others do not contribute considerably.

Stable results require a great number of simulations, especially if

the sensitivity indices are small or even close to the range of spurious

correlation. For the results presented in this paper, some indices close

to zero were found to take on negative values as well. Since this is

factually not possible, these results were set to zero. Due to immense

computational costs linked with the lifetime-model from Section 3,

the convergence behavior for numerically determined sensitivity indi-

ces was assessed on simplified model with less computational cost

and fewer parameters. Details can be found in Reference 28. For sta-

ble and reliable results, at least 1000 simulations are recommended.

(A) (B)

(C)

S

F IGURE 7 Dimensions and combinations of the two sample matrices A and B (top); correlation matrix in case of modified sampling
(bottom). A, Original sampling. B, Modified sampling. C, Correlation matrix. Source: David Sanio
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5 | CONCLUSIONS

In this paper, variance-based sensitivity indices, also known as Sobol'

indices, are determined to assess the sources of uncertainty of fatigue

lifetime predictions of prestressed concrete bridges. The comprehen-

sive model processes linear-elastic and nonlinear bearing behavior and

stresses in the prestressing steel due to concrete cracking, idealized

traffic loads from codes superposed with temperature-induced con-

straints, as well as time-dependent prestress losses. Fatigue damage is

captured by the S-N-approach and linear accumulation. For all param-

eters, distribution functions of their variance were defined. This is also

true for geometric and material parameters, which govern structural

resistance.

From the results of the sensitivity analysis, a few leading parame-

ters were identified which significantly affect the variance of the

model output. They are the key elements to more accurate lifetime

predictions of prestressed concrete bridges under fatigue. To improve

the predictions, their uncertainty must be reduced, for example by

means of monitoring: The most important elements are as follows.

1. traffic loads, which were represented by a truck from the fatigue

load model 4 according to the Eurocodes;

2. the loss of prestress due to creep and shrinkage, which was incor-

porated by the time-dependent model B3 and which increases the

frequency of concrete cracking;

3. the traffic frequency, which was incorporated by an annually

incrementing function in accordance with the global trend of grow-

ing traffic amounts; and

4. the exact position of the coupling joint, which is the design point

of the structural model as it is a well-known weak point of aged

bridges.

In particular, the first two elements interact strongly with other

parameters by means of covariances, as it can be seen from the sensitivity

indices STi�Si �0ð Þ. This is led back to a significantly altered bearing

behavior if concrete cracks under higher loads. This means that reduc-

ing the variance of one of these parameters would have a greater-

than-linear effect on the reduction of the variance of the model out-

put. The latter two are dominating with their direct linear influence on

the output, which is given by the first order sensitivity index Si �0ð Þ.
Other parameters, for example, the compressive strength and Young's

modulus of concrete, are identified almost irrelevant here.

Stable results require a great number of simulations, especially if

sensitivity indices are close to zero. For a reliable quantitative evalua-

tion, especially with regard to the minor relevant parameters, further

simulations (n > 1000) are required. Nevertheless, the results show a

tendency and are qualitatively true for the most relevant parameters.

The results correspond to the experience gained in engineering

practice. Here, the proposed method helps to quantify the knowledge

from experience. The results were determined for a prestressed con-

crete bridge with box girder cross section and medium span length as

continuous girders. For other structures and other models, the pres-

ented method helps to perform a similar quantitative evaluation in

advance.

(A) (B) (C)

F IGURE 8 First-order Si (top) and total sensitivity indices STi (bottom left) along with quantified interactions (bottom right). Source: David Sanio
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In practice, the uncertainty of the governing parameters can be

reduced by on-site measurements. In particular, the following moni-

toring measures are recommended to be monitored.

1. Traffic loads obviously have a considerable potential for increasing

the accuracy, since they are incorporated into the calculation by

means of conservative load models. Real loads can be measured

for the current condition—for example, by weigh in motion sys-

tems or direct strain measurements, cf. Reference 30.

2. The frequency of the transition of the cross section to the cracked

state due to decreasing prestress and increasing loads can be

determined by crack widths measurement. Combined with

corresponding temperature or traffic loads, the model can be

calibrated.

3. Regarding the load frequency, accurate load histories often can be

estimated from traffic counts on-site or nearby. So, even retro-

spective evaluations are possible. They can also serve as a basis for

predicting load frequencies.

4. The accuracy of the structural model can be significantly increased

with comparatively little effort by a 3D digital survey of the

structure—for example, by means of laser scans, cf. Reference 8.

Finally, it can be concluded that especially measurements of

the right elements can reduce uncertainty in the prediction of

structural lifetime significantly. The most relevant parameters

were identified in this paper for a real reference structure. The

results serve as a basis for experts' decisions on the right elements

for a structural monitoring, some elements are given. The quanti-

tative evaluation of this gain in accuracy through measurements is

part of further investigations.28 An approach by the authors will

be published soon.
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